Дипломная работа

«Методика изучения гладкости обобщенного решения для эллиптического уравнения»

  • 40 страниц
Содержание

Глава 1. Уравнения эллиптического типа 4

§1. Постановка краевых задач. Описание основного материала излагаемого в этой главе . . . . . . . . . . . . . . . . . . . . 4

§2. Обобщенные решения из W12 (Ω). Первое (энергетическое) неравенство . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

§3. Исследование разрешимости задачи Дирихле в пространстве W12 (Ω) (три теоремы Фредгольма) . . . . . . . . . . . . . . 11

§4. Второе основное неравенство для эллиптических операторов 21

§5. Разрешимость задачи Дирихле в пространстве W22 (Ω) . . . . 30

Введение

ГЛАВА 1

УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО ТИПА

§1. Постановка краевых задач. Описание основного материала

излагаемого в этой главе

В данной главе мы рассматриваем линейные уравнения второго порядка

ℑu =Σni,j=1∂∂xi(aij(x)uxj+ai(x)u(x))+Σni=1

bi(x)uxi+a(x)u = f(x)+Σni=1

∂fi(x) ∂xi (1.1)

aij(x) = aji(x),

удовлетворяющие условию равномерной эллиптичности в ограниченной

области Ω евклидова пространства Rn. Равномерная эллиптичность (1.1)

в Ω означает выполнение неравенства

νξ2 6 aij(x)ξiξj 6 μξ2, ξ2 =

Σn

i=1

ξ2

i (1.2)

c каким-либо положительным постоянным ν и μ при ∀ x ∈ Ω и любых

вещественных параметрах ξ1 . . . ξn. Левое из неравенств (1.2) выражает

требование эллиптичности, правое – ограниченность коэффициентов aij(x).

Остальные коэффициенты уравнения (1.1) – ai, bi и a – мы также будем

считать ограниченными функциями в Ω, хотя приводимые ниже результаты

остаются справедливыми при более общих предположениях: принадлежности

этих коэффициентов к Lpk(Ω) с некоторыми pk, зависящими от n (подробнее

об этом см.[4]). Все функции, рассматриваемые в книге, являются измеримыми

(по Лебегу) функциями. Это свойство предполагается выполненным всюду

и специально в дальнейшем не оговаривается. Во многих параграфах

функции aij , ai и fi не обязаны иметь производные (даже обощенные).

Как понимать в этом случае уравнение (1.1), будет объяснено в следующем

параграфе. В тех случаях, когда aij , ai и fi имеют обощенные производные,

уравнение (1.1) может быть записано в традиционной форме:

ℑu = aijuxixj + ˜aiuxi + ˜au = ˜ f (1.1′)

Фрагмент работы

Для уравнений (1.1) (или (1.1′)) мы рассмотрим следующие три краевые

задачи:

1) задачу Дирихле (первую краевую задачу), состоящую в нахождении

функции u(x) удовлетворяющей в области Ω уравнению (1.1)(или (1.1′))

и на границе S области Ω краевому условию

u |s= φ(s), (1.3)

2)задачу Неймана (вторую краевую задачу), в которой ищется решение

u(x) уравнения (1.1)(или (1.1′)), удовлетворяющие краевому условию

∂u

∂N

|s= φ(s), (1.4)

где ∂u

∂N

≡ aijuxjni, а n = (n1, n2, . . . nn) — единичная нормаль к S

(направленная, как всегда, вне Ω) и

3)третью краевую задачу, в которой краевое условие имеет вид

∂u

∂N

+ σ(s)u |s= φ(s). (1.5)

Во всех этих задачах функция φ(s), равно как Ω, σ, f, fi и коэффициенты

уравнений, считаются известными. Подлежит определению лишь функция

u(x). Все перечисленные задачи могут быть сведены к задачам с однородными

краевыми условиями, т.е. к таким, в которых φ(s) ≡ 0. Действительно,

если вместо функции u(x) ввести новую неизвестную функцию ν(x) =

u(x) − Φ(x), где Φ(x) есть произвольная функция, удовлетворяющие

лишь взятому краевому условию (т.е.(1.3), (1.4) или (1.5)), то исходная

задача сведется к такой же задаче для функции ν(x), но с однородным

краевым условием. Уравнение для ν(x)

ℑν = ℜ +

∂ℜi

∂xi

(1.6)

отличается от (1.1) лишь свободными членами (правой частью), а именно,

в (1.6)

ℜ = f − biΦxi

− aΦ,ℜi = fi − aijΦxj

− aiΦ. (1.7)

Заключение

условия (2.3), (2.4), (4.2), и (5.1), а граница S удовлетворяет

условиям, при которых справедливо второе основное неравенство. Пусть,

далее, задача

ℑ0u = f, u|s = 0 (5.3)

имеет решения u(x) изW2

2,0(Ω) для какого-либо плотного в L2(Ω) множества

M элементов f(x).

Тогда задача

ℑτu = f, u|s = 0, где ℑτ = ℑ0 + τ (ℑ1 − ℑ0), (5.4)

однозначно разрешима в W2

2,0(Ω) для ∀f ∈ L2(Ω) при ∀τ ∈ [0, 1].

Из условий теоремы следует, что для ℑ0 справедливы неравенства

(5.1) и (5.2), т.е.

ℑ0(u, u) ≥ δ1∥u∥2, δ1 > 0, (5.5)

и

∥u∥(2)

2,Ω

≤ c∥ℑ0u∥ (5.6)

для ∀u ∈ W2

2,0(Ω). Благодаря (5.6) задача (5.3) однозначно разрешима в

W2

2,0(Ω) для ∀f ∈ L2(Ω). Действительно, для f из M разрешимость дана

одним из условий теоремы, а единственность следует из (5.6). Если же

∀f ∈ L2(Ω), но f ∈ M, то возьмем последовательность fm,m = 1, 2, .,

из M сходящуюся к f в норме L2(Ω). Для каждого из fm существует

решение um задачи (5.3) с f = fm, принадлежащие W2

2,0(Ω). В силу

линейности задачи разность uk − um есть решение задачи (5.3) с f =

fk − fm. Для нее верно неравенство (5.6), т.е.

∥uk − um∥(2)

2,Ω

≤ c∥fk − fm∥

из которого следует, что uk сходится в W2

2,0(Ω) к некоторому элементу и

u ∈ W2

2,0(Ω). В силу ограниченности коэффициентов ℑ0, функции ℑ0uk

сходятся в L2(Ω) к ℑ0u, т.е. ℑ0u = f. Итак, мы убедились, что для

∀f из L2(Ω) задача (5.3) имеет решение и из W2

2,0(Ω). Из (5.6) следует

его единственность в пространстве W2

2,0(Ω). Тем самым мы доказали,

что оператор ℑ0 устанавливает взаимно однозначное соответствие между

полными пространствами W2

2,0(Ω) и L2(Ω). Рассмотрим теперь семейство

операторов

ℑτ = ℑ0 + τ (ℑ1 − ℑ0), τ ∈ [0, 1]

Очевидно, ℑτ при τ = 0 совпадает с ℑ0, а при τ = 1 — с ℑ1. Покажем,

что при ℑτ при ∀τ из [0,1] устанавливает взаимно однозначное соответствие

между W2

2,0(Ω) и L2(Ω). Так как оператор ℑ0 обладает этим свойством,

то задача

ℑτu = f, u|s = 0 (5.7)

эквивалентна задаче

⌊E + τℑ−1

0 (ℑ1 − ℑ0)⌋u = ℑ−1

0 f (5.8)

в пространствеW2

2,0(Ω). Оператор ℑ−1

0 (ℑ1−ℑ0) является ограниченным в

W2

2,0(Ω), ибо в силу ограниченности коэффициентов ℑ1 и ℑ0 и неравенства

(5.6)

∥ℑ−1

0 (ℑ1 − ℑ0)u∥(2)

2,Ω

≤ c∥(ℑ1 − ℑ0)u∥ ≤ c1∥u∥(2)

2,Ω (5.9)

т.е. норма ∥ℑ−1

0 (ℑ1 − ℑ0)∥(2) в пространстве W2

2,0(Ω) не превосходит c1.

Благодаря этому уравнение (5.8) однозначно разрешимо при ∀τ1 < 1/c1,

т.е. операторы ℑτ при τ < 1/c1, устанавливают взаимно однозначное

соответствие между W2

2,0(Ω) и L2(Ω). Если число ∀τ < 1/c1, то возьмем

∀τ < 1/c1, и применим к (5.7) оператор ℑ−1

τ1 . Это в силу ℑτ = ℑτ1 + (τ −

τ1)(ℑ1 − ℑ0) дает уравнение

⌊E + (τ − τ1)ℑ−1

τ1 (ℑ1 − ℑ0)⌋u = ℑ−1

τ1 f (5.10)

эквивалентное задаче (5.7). Для исследования разрешимости (5.10) оценим

норму оператора ℑ−1

τ1 (ℑ1−ℑ0) в пространствеW2

2,0(Ω). Для этого заметим,

что из (5.1) для ℑ1 и ℑ0 следует неравенство

ℑτ (u, u) = (1 − τ )ℑ0(u, u) + τℑ1(u, u) ≥ δ1∥u∥2, (5.11)

а из условий (2.3), (2.4), и (4.2) для ℑ1 и ℑ0 — выполнение таких же

условий с теми же постоянными для всех ℑτ , τ ∈ [0, 1]. Благодаря этому

для ∀u ∈ W2

2,0(Ω) и всех операторов ℑτ , τ ∈ [0, 1] справедливо неравество

(5.6), т.е.

∥u∥(2)

2,Ω

≥ c∥ℑτu∥ (5.12)

с той же постоянной c, что и в (5.6).

Из (5.11) и (5.12), как показано в (5.9), следует оценка нормы ∥ℑ−1

τ (ℑ1−

ℑ0)u∥(2) ≤ c1, если ℑ−1

τ существует. Возвращаясь к (5.10), заключаем, что

уравнение (5.10) однозначно разрешимо для τ − τ1 < 1/c1, в частности,

для τ = 2τ1, если 2τ1 ≤ 1. Тем самым показано существование обратного

оператора ℑ2τ1 . Продолжая это процесс, мы за конечное число шагов

убедимся в существовании ℑ−1

τ для ∀τ ∈ [0, 1]. Теорема 5.1 доказана.

Для ее применения надо иметь разрешимость в W2

2,0(Ω) задачи (5.3)

для какого-либо оператора ℑ0, обладающего свойствами, требуемыми

теоремой 5.1. Если Ω есть шар Kp, или шаровой слой Kp,p1 = {x : p ≤ |x| ≤ p1}

или параллелепипед Π, то в качестве ℑ0 можно взять оператор Лапласа.

Действительно, для этих областей (а также для многих других) известна

полная система собственных функций {uk(x)} оператора Лапласа при

первом краевом условии, причем uk(x) суть бесконечно дифференцируемые

в ¯Ω функции. Благодаря этому решением задачи

Δu =

ΣN

k=1

ckuk(x), u|s = 0

при произвольных числах ck и ∀N ≥ 1 является

u =

ΣN

k=1

ck

λk

uk(x) ∈ W2

2,0(Ω),

где Δuk = λkuk, uk|s = 0, причем суммы

k=1

ckuk(x) плотны в L2(Ω). Все

остальные условия теоремы 5.1 для ℑ0 = Δ также, очевидно, выполнены,

надо только в качестве ν и μi для ℑ0 и ℑ1 взять подходящие постоянные.

Следовательно, в указанных областях в качестве ℑ0 можно взять Δ.

Аналогичное рассуждение верно и для областей, которые могут быть

невырожденным преобразованием переменных y = y(x) с y(x) ∈ C2(Ω)

преобразованы в одну из областей указанного вида3. Действительно,

переходя к переменным y в уравнении ℑu − λ0u = f, мы приходим

к уравнению eℑ u − λ0u = f, где eℑ u ≡ ∂

∂yi

(bijuyi) + biuyi + bu, bij =

akl

∂yi

∂xk

∂yi

∂xi

, bi = ak

∂yi

∂xk

−aij

∂yi

∂xj

∂yk

(

∂yk

∂xl

)

, b = a, в области eΩ изменения

y. Коэффициенты eℑ удовлетворяют условиям вида (2.3), (2.4), (4.2).

Благодаря этому для eℑ ≡ eℑ − λ0E с достаточно большим λ0 будут

справедливы неравенства (5.1), (5.2) (вообще говоря, с другими постоянными),

а потому и теорема 5.1. В качестве eℑ 0 можно взять оператор

Σn

i=1

∂2

∂y2

i

λ0E. Тогда теорема 5.1 гарантирует однозначную разрешимость вW2

2,0(eΩ)

задачи

(eℑ − λ0E)u = f, u|

∂eℑ = 0 (5.13)

Возвращаясь к переменным x, убеждаемся, что задача

(ℑ − λ0E)u = f, u|s = 0 (5.14)

однозначно разрешима в W2

2,0(Ω). Итак, доказана.

Теорема 5.2.Если коэффициенты ℑ из (4.1) удовлетворяют условиям

(2.3), (2.4), и (4.2), f ∈ L2(Ω), а область Ω есть шар, или шаровой

слой, или параллелепипед, или может быть преобразована в одну из этих

областей с помощью регулярного преобразования y = y(x) ∈ C2(Ω), то

задача (5.14) однозначно разрешима в W2

2,0(Ω) для достаточно больших

λ0.

Возьмем теперь произвольное обощенное решение u(x) изW1

2 (Ω) задачи

(ℑ − λ0E)u = f, u|s = 0 (5.15)

с f ∈ L2(Ω). Его можно рассмотреть как обобщенное решение из W1

2 (Ω)

задачи (5.14) со свободным членом, равным f+(λ−λ0)u ∈ L2(Ω). В силу

теорем 5.2 и 2.1 эта задача разрешима в W2

2,0(Ω) и для нее имеет место

теорема единственности в классе W1

2 (Ω). Следовательно, взятое нами

Т.е. функция y = y(x) должна давать диффеоморфное отображение ¯Ω на ˜ Ω, y(x) ∈ C2(¯Ω) и

якобианы ∂(y)

∂(x)

и ∂(x)

∂(y)

должны быть строго положительными.

u(x) будет принадлежать W2

2,0(Ω). Таким образом, доказана следующая

теорема:

Теорема 5.3.Если для ℑ, f и Ω выполнены условия теоремы 5.2, то

любое обобщенное решение из W1

2 (Ω) задачи (5.15) является элементом

W2

2,0(Ω).

Из этой теоремы и результатов §3 о фредгольмовой разрешимости

задачи

ℑu = λu + f, u|s = 0 (5.16)

в пространстве W1

2 (Ω) следует, что при выполнении условий теоремы 5.3

эта задача фредгольмово разрешима и в пространстве W2

2,0(Ω). Спектр

ее {λk}, k = 1, 2., то оператор ℑ − λE имеет ограниченный обратный,

что в условиях теоремы 5.3 гарантирует наличие оценки

∥u∥(2)

2,Ω

≥ cλ∥(ℑ − λE)u∥ (5.17)

Постоянную cλ в общем случае мы не можем выписать явно через

коэффициенты ℑ − λE и S, как это было сделано в §6 в случае (6.9),

однако ее существование гарантировано теоремами Фредгольма.

Замечание 5.1.Теорема 5.3 показывает, что увеличение ≪гладкости≫ коэффициентов

ℑ, f и Ω гарантирует увеличение гладкости всех обобщенных решений из

W1

2 (Ω) уравнений (5.15)4. Можно показать, что это улучшение свойств

решений имеет локальный характер. Именно, если коэффициенты ℑ и

f удовлетворяют условиям теоремы 5.2 лишь в какой-либо области Ω1

области Ω, то ∀ обобщенное решение u ∈ W1

2 (Ω) уравнения (5.15) будет

элементом W2

2 (Ω′

1) для ∀Ω′

1

⊂ Ω1. Если же Ω1 примыкает к границе

Ω по куску S1 ⊂ S, и ℑ, f и Ω1 удовлетворяют условиям теоремы 5.2,

то ∀ обощенное решение u(x) ∈ W1

2 (Ω) будет элементом W2

2 (eΩ1) для

∀eΩ1 ⊂ Ω1, отстоящей от части границы Ω1, не принадлежащей S, на

положительное расстояние. Из этих результатов следует, что теоремы 5.2

и 5.3 справедливы для более широкого класса областей Ω, а именно, для

областей, которые можно представить в виде суммы

N∪

i=1

Ωi областей Ωi,

Список литературы

1. Бернштейн С.Н. Исследование и интегрирование дифференциальных уравнений с частными производными второго порядка эллиптического типа. — Харьков, 1908.

2. Ладыженская О.А. Краевые задачи математической физики. — М.: Наука, 1973 г. – 408с.

3. Ладыженская О.А. О замыкании эллиптического оператора // ДАН СССР 79, №5, 1951, С. 723-725.

4. Ладыженская О.А., Уральцева Н.Н., Солонников В.А. Линейные и квазилинейные уравнения эллиптического типа. — М.: Наука, 1973 г., второе издание.

5. Смирнов В.И. Курс высшей математики. — М.: Физматгиз, 1959.

Покупка готовой работы
Тема: «Методика изучения гладкости обобщенного решения для эллиптического уравнения»
Раздел: Математика
Тип: Дипломная работа
Страниц: 40
Цена: 950 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Популярные услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

682 автора

помогают студентам

23 задания

за последние сутки

10 минут

среднее время отклика